Code: 20CS3301, 20IT3301

II B.Tech - I Semester - Regular Examinations - FEBRUARY 2022

FUNDAMENTALS OF DIGITAL LOGIC DESIGN (Common for CSE, IT)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

UNIT - I

1. a) Convert the following octal numbers to hexadecimal
i) 2035
ii) 1762.46
iii) 6054.263
b) Show that
i) $\mathrm{AB}+\mathrm{A} \bar{B} \mathrm{C}+\mathrm{B} \bar{C}=\mathrm{AC}+\mathrm{B} \bar{C}$
ii) $\mathrm{A} \bar{B} \mathrm{C}+\mathrm{B}+\mathrm{B} \bar{D}+\mathrm{AB} \bar{D}+\bar{A} \mathrm{C}=\mathrm{B}+\mathrm{C} \quad 7 \mathrm{M}$ OR
2. a) Perform the following subtractions in XS-3 code using 9's compliment
i) $687-348$
ii) $246-592$
b) Without reducing, convert the following expressions to NAND logic
i) $A+B C+A B C$
ii) $(\mathrm{XY}+\mathrm{Z})(\mathrm{XY})$
iii) $(1+\mathrm{A})(\mathrm{ABC})$

UNIT - II

3. a) Reduce the following expressing using K-map
i) $(\mathrm{A}+\mathrm{B})(\mathrm{A}+\bar{B}+\mathrm{C})(\mathrm{A}+\bar{C})$
ii) $\mathrm{A}(\mathrm{B}+\bar{C})(\mathrm{A}+\bar{B})(\mathrm{B}+\mathrm{C}+\bar{D})$
b) Reduce the following expression

$$
F=\sum m(2,3,6,7,8,10,11,13,14)
$$

and implement it using NOR Gates.
4. a) Realize the XOR function using
i) AOI logic
ii) NAND logic
7 M
b) Reduce the following expression $\mathrm{F}=\Pi \mathrm{M}(2,8,9,10,11,12,14)$ and implement it in universal logic.

UNIT-III

5. a) Design a 4-bit binary to BCD converter.
b) Implement the logic function using an 8 X 1 Multiplexer.

$$
\begin{gathered}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,3,4,11,12,13,14,15) \\
\text { OR }
\end{gathered}
$$

6. a) Give the necessary logical circuit for carry generation
in Carry-Look-Ahead adder.
b) Design a Full Adder circuit and realize it using two half adders.

UNIT - IV

UNIT - V

9. a) Design a Mod-9 Synchronous counter using T- FF. 7 M
b) With neat diagram explain the 4-bit Serial-in, Parallel-
out shift Register. OR
10. a) Design an up/down counter using D FF's to count $0,3,2,6,4,0 \ldots$. 7 M
b) What is universal shift register and explain with neat
diagram.
